🧩 System Architecture Overview

flowchart TD subgraph User["🧑‍💻 User / Client"] UI["React Web App\n(Select State / Play Audio)"] end subgraph Frontend["🌐 Frontend (React + Web Audio)"] WA["Web Audio API\n(Local volume, filters, fade)"] UI --> WA end subgraph Backend["🟣 Node.js API Gateway"] API["Express / Fastify\n(session, feedback routes)"] EL["🎵 ElevenLabs Music API"] DSP["🧠 DSP Microservice (Python FastAPI)\nAdd Binaural/Isochronic Beats"] DB["📊 Supabase / PostgreSQL\n(Session & Feedback Storage)"] end subgraph Infra["☁️ Cloud / Delivery"] S3["AWS S3 / CloudFront\nStore final audio tracks"] DOCKER["Docker Compose Stack\n(Node + DSP + DB)"] end subgraph FutureAI["🧬 Future Adaptive Layer"] OPT["Bayesian Optimizer\n(tune diffHz/mixDb per user)"] WEAR["WHOOP / Muse SDKs\n(HRV / EEG Signals)"] end UI -->|POST /session| API API -->|Generate music| EL EL -->|AI music (WAV)| API API -->|Send to DSP| DSP DSP -->|Processed Audio| API API -->|Upload| S3 API -->|Return track URL| UI UI -->|Play via <audio>| WA UI -->|POST /feedback| API API --> DB DB --> OPT OPT --> API WEAR --> OPT

⚙️ Component Summary

Component
Stack
Purpose
Frontend
React + Tailwind + Web Audio API
User selects state → plays generated sound.
Backend (Node.js)
Express/Fastify + Socket.io
Orchestrates ElevenLabs API calls, DSP mixing, and session handling.
AI Generator
ElevenLabs Music API
Creates high-quality base track for each mental state.
DSP Microservice
Python + Pydub/Numpy
Adds entrainment (binaural/isochronic beats).
Database
Supabase (PostgreSQL)
Stores session metadata, user feedback, and parameters.
Storage/CDN
AWS S3 + CloudFront
Serves generated audio files.
Optimizer (Future)
Python + skopt / bayes-opt
Adjusts entrainment patterns based on biometrics or feedback.
Wearable Integrations (Future)
WHOOP / Muse / Apple Health
Real-time physiological signal input (HRV, EEG).

🔄 Data Flow Summary

  1. State selection: User chooses Focus, Calm, Sleep, or High in the React UI.
  1. API call: Frontend sends POST /session → Node.js gateway.
  1. Music generation: Node calls ElevenLabs Music API → receives audio (WAV/MP3).
  1. Entrainment processing: Node sends audio URL + state parameters → Python DSP.
  1. DSP output: Python applies binaural or isochronic beats → returns processed track.
  1. Storage: Node uploads final track to S3/CDN and stores metadata in Supabase.
  1. Playback: React receives URL → plays via HTML5 <audio> + Web Audio API effects.
  1. Feedback: User rates experience → POST /feedback → stored in DB.
  1. (Future) Adaptive engine (Bayesian) adjusts parameters based on HRV/EEG trends.

🧱 Deployment Architecture

graph LR subgraph Docker Stack A["Node.js Gateway (API)"] --> B["Python DSP Worker"] A --> C["PostgreSQL (Supabase)"] B --> D["AWS S3 Bucket"] end subgraph Frontend Layer E["React Web App (Vercel/Netlify)"] --> A end subgraph Optional Cloud F["Bayesian Optimizer Service"] --> A G["WHOOP / Muse API"] --> F end
Hosting Recommendation
  • Frontend: Vercel / Netlify (fast static deploys)
  • Backend + DSP: AWS ECS / Railway / DigitalOcean droplet
  • DB: Supabase (managed Postgres + Auth)
  • Storage: AWS S3 + CloudFront CDN

🧭 Example Parameter Presets

State
Mode
diffHz
mixDb
Fade(s)
Description
Focus
Binaural
10 Hz
-18
6
Alpha wave for steady concentration
Calm
Binaural
7 Hz
-20
8
Theta wave for relaxation
Sleep
Isochronic
4 Hz
-22
10
Delta wave for deep rest
High
Isochronic
16 Hz
-18
4
Beta wave for elevated alertness

🗓️ Sprint Breakdown (4–6 Weeks)

Week
Milestone
Deliverables
1
Core setup
Repo, Docker stack, ElevenLabs API integration
2
DSP integration
Python microservice + presets for 4 states
3
React front-end
UI/UX, audio playback, feedback form
4
Session storage
Supabase integration + basic analytics
5
Adaptive loop
Rule-based adjustment (pre-optimiser)
6
Polishing
QA, deploy demo, prepare showcase video

🧠 Outcome

At MVP completion you’ll have:
  • A working app that generates real-time AI + neuroscience-based audio.
  • Four working emotional/mental states.
  • Real-time playback and feedback loop.
  • A deployable demo for investors and early testers.

Would you like me to now convert this into a project specification document (with scope, tech stack, milestones, and deliverables formatted for investor or dev handover)?
It would be ready to send directly to your development team or include in your funding pack.